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ATTITUDE/ATTITUDE-RATE ESTIMATION
FROM GPS DIFFERENTIAL PHASE MEASUREMENTS

USING INTEGRATED-RATE PARAMETERS

Yaakov Oshman* and F. Landis Markley'

A sequential filtering algorithm is presented for attitude and attitude-rate estima-
tion from Global Positioning System (GPS) differential carrier phase measurements.
A third-order, minimal-parameter method for solving the attitude matrix kinematic
equation is used to parameterize the filter's state, which renders the resulting estima-
tor computationally efficient. Borrowing from tracking theory concepts, the angular
acceleration is modeled as an exponentially autocorrelated stochastic process, thus
avoiding the use of the uncertain spacecraft dynamic model. The new formulation
facilitates the use of aiding vector observations in a unified filtering algorithm, which
can enhance the method's robustness and accuracy. Numerical examples are used to’
demonstrate the performance of the method.

INTRODUCTION

Attitude determination methods using Global Positioning System (GPS) signals have been inten-
sively investigated in recent years. In general, these methods can be classified into two main classes.
Point estimation algorithms (also called “deterministic” algorithms), in which the GPS measure-
ments at each time point are utilized to obtain an attitude solution independently of the solutions at
other time points, were introduced, among others, in Refs. 1, 2 and 3. Stochastic filtering algorithms,
which process the measurements sequentially and retain the information content of past measure-
ments, can produce better attitude solutions by more effectively filtering the noisy measurements.
Such algorithms were recently introduced in Refs. 4 and 5, both of which utilized extended Kalman
filtering to sequentially estimate the attitude from GPS carrier phase difference measurements. Both
attitude and attitude-rate were estimated, and the filters used the nonlinear Euler equations of mo-
tion for attitude propagation. While avoiding the traditional usage of the costly and unreliable gyro
package, this approach rendered the resulting filters computationally burdensome and sensitive to
inevitable modeling errors.® In Ref. 4 an attempt was made to robustify the dynamics-based filter
by estimating the unknown disturbance torques, modeled as unknown constants.

Although GPS-based attitude estimation methods should enjoy, in principle, the low price and
low power consumption of state-of-the-art GPS receivers, and the general availability and robustness
of the global positioning system, these methods are very sensitive to multipath effects and to the
geometry of the antennae baseline configuration, and they inherently rely on precise knowledge
of the antennae baselines in the spacecraft body frame. On the other hand, methods based on
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vector observations have reached maturity and popularity in the last three decades. However, as is
well known, they too suffer from disadvantages, that can be attributed to the particular attitude
sensors on which they are based. Thus, while their readings are relatively noiseless, Sun sensors are
very sensitive to Earth radiation effects, and are rendered completely useless during Eclipse. Star
trackers can provide accuracy on the order of a few arc-sec, but are usually extremely expensive.
Magnetometers always provide measurements of the Earth magnetic field in spacecraft flying in low
Earth orbits, but they are sensitive to unmodeled residual magnetic fields in the spacecraft and to
magnetic field model imperfections and variations.

The method presented herein is a sequential estimator for both the spacecraft attitude matrix and
attitude-rate, which mainly uses differential GPS carrier phase measurements, but can also process
aiding vector observations (such as low accuracy coarse Sun sensor measurements, or magnetic field
measurements). Conceptually similar to the principle of complementary filtering, the idea underlying
this estimator is that, due to the different nature of these signals, the combination of both in a unified
data processing algorithm can benefit from the relative advantages of both sensor systems, while
alleviating the disadvantages of both.

The new estimator is based on a third-order minimal-parameter method for solving the attitude
matrix evolution equation using integrated-rate parameters (IRP).” Similarly to Refs. 5 and 4,
the new estimator is a sequential filtering algorithm and not a deterministic (point estimation)
algorithm. However, the new algorithm differs from other works addressing the same problem in
two main respects. First, the estimator’s propagation model does not utilize the nonlinear Euler
equations. Instead, employing an approach borrowed from linear tracking theory,® the uncertain
dynamic model of the spacecraft is abandoned, and the angular acceleration is modeled as a zero-
mean stochastic process with exponential autocorrelation. Combined with the extremely simple
evolution equation of the integrated-rate parameters, this results in a simple, linear propagation
model. Second, in contrast with other methods relying mainly on the attitude quaternion, the
algorithm presented herein directly estimates the attitude matrix, a natural, nonsingular attitude
representation. Building upon the minimal, third-order integrated-rate parametrization, the new
estimator assigns just three state variables for the parametrization of the nine-parameter attitude
matrix, which is at the heart of its computational efficiency.

INTEGRATED-RATE PARAMETERS
Consider the matrix differential equation
V) =WOV(E), Vi) =V (1)

where V(t) € R™", W(t) = —W7(¢) for all t > to, VoVF = I and the overdot indicates the temporal
derivative. Defining

t
Atto) 2 [ Wir)ar @)
to
Wo(t) £ W(t) — (t - to)W(t) 3)
it can be shown that the following matrix-valued function is a third-order approximation of V'(¢):

A2(t,ty)  A3(t,to) ¢
] TR

- -t - -
V(t.to) & {1+ At.to) + 3 [At () - We®A® )]} (@)
Moreover, V is a third-order approximation of an orthogonal matrix, i.e., ?(t,to)f/T(t, to)=I+
O((t ~ to)*) where O(z) denotes a function of z that has the property that O(z)/z is bounded as
z = 0.

In the 3-D case, the off-diagonal entries of A(t,tp), termed integrated-rate parameters, have a
simple geometric interpretation: they are the angles resulting from a temporal-integration of the
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three components of the angular velocity vector w(t) £ [wi(t) wa(t) ws(t)]”, where w; is the
angular velocity component along the i-axis of the initial coordinate system, and i = 1,2,3 for
z,%, z, respectively. The orthogonal matrix differential equation (1) is rewritten, in this case, as

D(t) =Q(t)D(t),  D(to) = Do (5)

where D(t) is the attitude matrix, or the direction cosine matrix (DCM), Q(t) = —[w(t)x], and
[w(t)x] is the usual cross product matriz corresponding to w(t). In this case, the matrix A(t,%o)
takes the form

A(t,to) 2 —[6(t)x] (6)
where the parameter vector 8(t) is defined as
T
o) 2 [:(6) 6a(6) 6a(t)] (7)
and
0; ét,-‘rdf, i =1,2, 8
(t) /to wi(7) i=1,2,3 (8)

Let the sampling period be denoted by T £ ti,; — tx. Using the notation 8(k) £ 6(tx), the
parameter vector at time t; is 8(k) = [61(k) 62(k) 63(k)]T and Eq. (8) implies

8i(k) = / Y arydn =123 ©)

to

From Eq. (9) we have
trr1
0k +1) = (k) + / w(r)dr (10)
tx
Define A(k + 1,k) to be the discrete-time analog of A(t,1o), i.e.,
A(k+1,k) £ —[(6(k +1) — 8(k)) x] (11)
Also, let ¥(k +1) £ —[(k + 1)x], where
Ylk+1) 2wk +1)-wk+1)T (12)
Then, the corresponding discrete-time equivalent of Eq. (4) is
Dk+1) = {1 FAKk+1,E) + %A"’(k 1K)+ %Aa(k +1,k)
+ %T[A(k + Lk +1) = U(k + DAK+1,5)] }D(k) (13)

which, using Eqs. (11) and (12), can be written as

D(k+1) = D[8(k + 1) — 8(k),w(k + 1),&(k + 1), D(k)] (14)
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KINEMATIC MOTION MODEL

To avoid using the uncertain spacecraft dynamic model, the spacecraft angular acceleration is mod-
eled as a zero-mean stochastic process with exponential autocorrelation function. The acceleration
dynamic model is, therefore, the following first-order Markov process,

G(t) = —Ad(t) + 5(t) (15)

For simplicity, a decoupled kinematic model is chosen for the three angular rate components, i.e.,
A £ disg{m!, 1y 11, where {;}}_, are the acceleration decorrelation times associated with
the corresponding body axes. The driving noise is a zero-mean white process, with power spectral
density (PSD) matrix

Q(t) =2A%%, T 2 diag{oy,04,03} (16)

The noise variances in Eq. (16) were chosen according to the Singer angular acceleration probabilis-
tic model,® in which the angular acceleration components, {@i},, can be 1) equal to ws; with
probability pas;, 2) equal to —wps; with probability pas;, 3) equal to zero with probability py,, or
4) uniformly distributed over the interval [—@ps;,was;] with the remaining probability mass. Using
this model, it follows that

apl
WM E
of = =1+ 4pu; - poy) an

The parameters wp;, pm; and po; are considered as filter tuning parameters. As customarily done,
they are selected by experience with real and simulated data, so as to optimally adapt the filter to
the characteristics of the problem at hand.

Now let the system’s state vector be defined as z(t) £ [6T(¢) w7 (t) d:T(t)]T, then the state
equation is

0I5 o 0
z(t) = Fz(t) + o(t) = [0 0 I :’ z(t) + [ 0 ] (18)
0 0 - b(t)

with obvious definitions of F and #(t). Corresponding to the sampling interval T', the discrete-time
state equation is

z(k + 1) = S(T)z (k) + v(k) (19)

where the transition matrix is

I TI A %(e AT -1+ TA)
M) =efT=0 I A~I(I — e~AT) (20)
0 0 e~AT
and v(k) is a zero-mean, white noise sequence, with covariance matrix
T
Q(k) £ E{o(k)oT(k)} = / eFT-94iag{0,0,O(t) }eF T~V dt (21)
0

MEASUREMENT PROCESSING

GPS Differential Phase Measurements

Consider the basic GPS antenna array, depicted in Fig. 1. The array consists of the master antenna,
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Figure 1. GPS Phase Difference Measurement Geometry

Ap, and the slave antenna, A,. These antennas are located on the satellite’s surface, such that the
baseline vector between them, resolved in a body-fixed coordinate system, is Ej. It is assumed that
the entire system consists of m; antennas, in addition to the master antenna, so that there exist m,;
independent baselines. It is also assumed that at time ¢x,1, m, GPS satellites are in view.

Consider the ith satellite, and denote the sightline (unit) direction vector to that satellite, resolved
in an inertial coordinate system, by s;. Let D(k + 1) be the attitude matrix transforming vectors in
the inertial coordinate system to their body-fixed system representations at time tx4,. Let N;;(k+1)
and A¢;;(k+1) denote the integer and fractional parts, respectively, of the phase difference between
the two carrier signals, corresponding to the ith satellite, as acquired by the antennas A,, and A;.
Denoting by A the GPS carrier wavelength, the true (noiseless) signals satisfy

[A¢ij(k +1) + Nij(k+1)]A =T D(k +1)s; (22)

The standard GPS carrier wavelength is 19.03 ¢cm. In this work, it is assumed that the integer part
of the phase difference between the two receivers is known from a previous solution.!'®

In practice, the phase measurements will be contaminated by noise, the primary source of which
" is due to the multipath effect.! Denoting the noise corresponding to the baseline b; and the sightline
s; by 74;(k + 1), the real measurement equation is

where it is assumed that #i;;(k + 1) ~ N(0,6%(k + 1)). Typically it can be assumed that the noise
standard deviation is on the order of 5 mm.! From Eq. (23) we obtain the normalized measurement
equation

A¢,’j(k +1)+ Nij(k + 1) = b;rD(k +1)s; + n,-,-(k + 1) (24)

where we have defined b; £ b;/A and n,;(k +1) £ fi;;(k + 1)/A. The normalized measurement noise

satisfies ng;(k + 1) ~ N(0, 0% (k + 1)), where oy;(k + 1) = &i;(k + 1)/A.

GPS Measurement Linearization

At t;4 the minimum mean square error (MMSE) predicted vector is Z(k+1|k), and its corresponding
prediction error covariance matrix is P(k + 1lk) £ E{#(k + 1|k)Z7 (k + 1]k)}, where the estimation
error is Z(jlk) £ z(j) — £(j|k). Using Eq. (14), Eq. (24) is rewritten as

Nij(k+1) + Agij(k + 1) = b] D[(k + 1) — 8(k),w(k + 1),w(k + 1), D(k)]s; + nij(k +1)  (25)
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Next, we linearize the nonlinear measurement equation (25) about the most recent estimate at tht1,
ie.,

6(k + 1]k) 86(k +1)
z(k + 1) = £(k + 1|k) + dz(k + 1) = [@(k + lik)} + [éu(k + 1)] (26)
O(k + 1]k) dw(k +1)

where 60(k + 1), dw(k + 1) and 6w(k + 1) are the perturbations of the state components about the
nominal (i.e., predicted) state. Let D*(k|k) denote the a posteriori, orthogonalized estimate of the
attitude matrix at time ¢, to be discussed in the next section. Using now the most recent estimates
for D(k) and z(k), namely D*(k|k) and £(k|k), respectively, in Eq. (25), it follows that

Apij(k +1) + Nij(k + 1) = bT D[B(k + 1]k) + 80(k + 1) — 6(k|k), &(k + 1[k) + Sw(k +1),
Gk + 1[k) + 8ir(k + 1), D* (k[k)]s; + nj(k + 1) (27)

As discussed in the sequel, the a posteriori IRP estimate is zeroed after each measurement update
(due to full reset control of the IRP state). We will, therefore, use the reset value of the IRP estimate,
6°(k|k) = 0, in Eq. (27). Now expand D about the nominal state using a first-order Taylor series
expansion, i.e.,

D[G(k + 1[k) + 86(k + 1), d(k + 1|k) + dw(k + 1), &(k + 1|k) + &k + 1), D*(klk))

3 - 2 A

D4R+ aD[8(k +1),&(k + 1(|9k0)',w(k + 1|k), D (k[k)]
i=1 ¢

3. OD[B(k + 1|k), w(k + 1), &(k + 1[k), D*(k|k)]

+ Z By ,a(k+1|k)

+

l. 86:(k + 1)
6(k+1]k)

Jw,-(k + 1)

i=1
i AD[b(k + 1|k), &(k + 1]k), ix(k + 1), D*(k|k)] ,
Buy w(k+1]k)

dwi(k +1) (28)
i=1

where (o) ] denotes ‘evaluated at ¢’ and D(k + 1|k) £ D[§(k + 1|k),&(k + 1]k), S(k + 1|k), D* (klk)]

Differentiating Eq. (13), the sensitivity matrices appearing in Eq. (28) are computed as

—a—D[G(k +1),&(k + 1|k), &k + 1|k), D* (klk)] = Gi[6(k + 1), %(k + 1|k)] D* (k|k) (29a)

6;
%D[@(k +1[k), w(k + 1), w(k + 1{k), D* (k|k)] = %Tﬂ [(k + 1]k)] D* (k|k) (29b)
%D[é(k +1]k), a(k + 1|k), é(k + 1), D* (k|k)] = —%T2F.- [6(k + 1]k)] D*(k|k) (29¢)

for i =1,2,3, where $(k + 1]k) 2 &(k + 1[k) - T (k + 1[k), and
Gul8 ) = 50T + €)= 6.1 = (1= L1617 [eox] + STweT — ™)+ Jifox] (300
Fi(6) = ;6T — geT (30b)

where e; is the unit vector on the ith axis, i = 1,2,3.
Using Egs. (28), (29) and (30) in Eq. (27) yields

Apij(k +1) + Nij(k +1) = T D(k + 1|k)s; = R3(k +1)6z(k + 1) + nyj(k + 1) (31)
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where the observation vector hy;j(k + 1) € R® is defined as
T T T T
hij(k +1) = [ho,.j(k +1) RT(k+1) AT(k+ 1)} (32)

and the elements of the vectors hg;(k + 1) € R?, hy,;(k +1) € R® and hy;;(k + 1) € R? are

haij,(k +1) = 6T Gp[8(k + 1K), Pk + 1[k)] D* (lk)s,, p=1,23 (33a)
1 . R

huij (kK +1) = ETb,TF,, [6(k + 1|k)] D* (k|k)s:, =123 (33b)

hdlijp(k + 1) = —Thwijp(k + l)v p= 1’273 (33C)

Define now the effective GPS measurement to be
y&(k+1) 2 Agi;(k + 1) + Ny — bT D(k + 1}k)s; (34)
Then, using this definition in Eq. (31) yields the following scalar measurement equation:
v&(k+1) = hyT(k + 1)dz(k + 1) + ny;(k + 1) (35)

For the m;, baselines and m, sightlines, there exist m, x m,; scalar measurements like Eq. (35).
We next aggregate all of these equations into a single vector equation, such that the measurement
associated with the baseline b; and sightline s; corresponds to the pth component of the vector
measurement equation, where p = (j — 1)m, + i. This yields

v (k+1) = H%(k + 1)éz(k + 1) + n®(k + 1) (36)

where the pth row of the matrix H#(k+1) is hi; T (k+1), n®(k+1) ~ N(0, R*(k+1)), and R®(k+1)
is a diagonal matrix whose diagonal elements are R3,(k + 1) = 0.

Vector Observation Aiding

If the sole source of attitude information is the GPS carrier phase signals, then Eq. (36) should serve
as the basis for the development of the measurement update algorithm (in the next section). In the
case that vector observations are available, this information structure needs to be augmented.

Assume that a new pair of corresponding noisy vector measurements is acquired at tg,;. This
pair consists of the unit vectors u(k + 1) and v(k + 1), which represent the values of the same vector
r(k+1), as modeled in the reference coordinate system and measured in the body coordinate system,
respectively. The direction-cosine matrix D{k + 1) transforms the true vector representation ug into
its corresponding true representation vy according to

vo(k +1) = D(k + Dug(k + 1) (37)

Assuming no constraint on the measurement noise direction, the body-frame measured unit vector,
v(k + 1), is related to the true vector according to

volk+ 1) +n,(k+1)

lvo(k + 1) + nf,(k + 1) (38)

vk+1) =

where the white sensor measurement noise is n},(k + 1) ~ N(0, R, (k +1)). Since both vo(k + 1) and
v(k + 1) are unit vectors, it follows from Eq. (38) that

vik+1)=vo(k+1)+n,(k+1) (39)
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where ny(k +1) £ P (k+1)ni(k+1) and PL(k+1) 2 T —vo(k +1)oT(k+1). Toa good approx-
imation, the effective measurement noise is a zero mean, white Gaussian sequence with covariance

Ry(k+1) = PL(k+ 1)R,(k + 1)PE (k+ 1) (40)

To account for non-ideal effects (e.g., star catalog errors), it is assumed that the modeled reference
vector is related to the true vector according to

u(k +1) = up(k + 1) + nyu(k + 1) (41)
where n, L up is a zero mean, white Gaussian noise, that is uncorrelated with n, and has a known

covariance matrix R, (k).

Vector Measurement Linearization
Using Egs. (11), (12) and (13), Eq. (37) can be rewritten as

vo(k +1) = D[6(k +1) — 8(k),w(k + 1), &(k + 1), D(k)] uo(k + 1) (42)
Linearizing about the predicted estimates and using Egs. (26), (39) and (41), it follows that

v(k +1) ~ny(k +1) = D[6(k + 1]k) + 86(k + 1), &(k + 1[k) + dw(k + 1),

G(k + 1)k) + 8o (k + 1), D* (k|k)] [u(k + 1) — ny(k + 1)) (43)
where the reset value of the IRP estimate, 5°(k}k) = 0, has been used. Expanding D about the
nominal state using the first-order Taylor series (28) yields

3
v(k+1) = D(k+ 1k)u(k+1) = > [G.- [6(k + 1]k), %(k + 1|K)]86:(k + 1)

i=1
+ -;—TF.- [6(k + 1]k)]Swik + 1) — %TzF,- [6(k + 1[k)]) b (K + 1)] D (klk)u(k + 1)
= Dk + 1k (k + 1) + ny(k + 1) = H(k + 1)z(k + 1) — D(k + Lk)nu (k + 1) + ny(k +1)

(44)
where the observation matrix H”(k + 1) is written in block matrix form as
H'(k+1) = [Hl(k+ 1) Hy(k+1) Ha(k+ 1)] € R%® (45)
and the columns of the submatrices H;(k + 1) € R%3,{ =1,2,3 are
Hyj(k+1) = G;[8(k + 1K), $(k + 1|k)) D" (k|k)u(k + 1) (46a)
1 - R
Hyi(k+1) = ETFJ- (6(k + 1|k)] D* (k{k)u(k + 1) (46b)
H3j(k+1) = -THai(k +1) (46¢)

for j = 1,2,3. Define now the effective measurement and measurement noise to be, respectively,

¥ (k+1) £ v(k +1) — D(k + 1k)u(k + 1) (47)
n’(k +1) & ny(k+1) ~ D(k + 1{k)n,(k + 1) (48)
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Then, using these definitions in Eq. (44) yields the following measurement equation:
yWk+1)=H"(+1)bx(k+1)+n"(k+1) (49)
where n¥(k + 1) ~ N(0, R¥(k + 1)) is the white measurement noise, and

RY(k+1) 2 Ry(k + 1) + D(k + 1}k)Ry(k + 1) DT (k + 1]k) (50)

Measurement Update

To process the measurements, define now
@ n®
y2 [y] . [n] (51)

where n ~ N(0,R) and R £ diag{R®, R"}. Since éz(k + 1) = z(k + 1) — #(k + 1]k) = £(k + 1|k)
and £(k + 1|k) is an unbiased, MMSE predictor, we have E{§z(k + 1)} = E{Z(k + 1}k)} = 0 and
cov{éz(k + 1)} = cov{Z(k + 1|k)} = P(k + 1|k), thus éz(k + 1) ~ N(0, P(k + 1|k)). Using the
linearized measurement equation and the statistical properties of the measurement and prediction
errors, the MMSE estimator of dz(k + 1) is

Sz(k+1lk+1) = K(k+y(k+1) (52)
where K (k + 1), the estimator gain matrix, is computed as

K(k+1) = P(k+1/k)HT (k + 1)[H(k + 1)P(k + 1|k)HT (k + 1) + R(k + 1)] -1 (53)

Also, E(k+1]k+ 1) = Z(k+1|k+1)—2(k+1]k) which, used in Eq. (52), yields the state measurement
update equation

Zk+1lk+1) =&k +1|k) + K(k+ 1)y(k + 1) (54)
Subtracting z(k + 1) from both sides of the last equation yields
Fk+1k+1) = [I - K(k+ 1)H(k +1)]Z(k + 1|k) - K(k + 1)n(k + 1) (55)
from which the resulting covariance update equation is

P(k+1k+1) = [I - K(k+ 1)H(k + 1)] P(k + 1k)[I - K(k + 1)H(k +1)]7
+ K(k+1)R(k+ KT (k+1) (56)

where the filtering error covariance is P(k + 1|k + 1) £ E{Z(k + 1|k + )T (k + 1|k + 1)}.

To compute the measurement-updated attitude matrix at time tx,;, we use the most recent
estimate £(k + 1}k +1) and the estimated attitude matrix corresponding to time t; in Eq. (13). This
yields

Dlk+1lk+1) = {I+ A(k+1,k) + %A?(k +1,E)+ %fl"’(k +1,k)

+ %T[A(k +1,k)¥(k+ 1)k +1) — ¥ (k+ 1k + 1Ak + 1, k)] }D'(klk) (57)
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where the a posteriori estimates of A(k + 1,k) and ¥(k + 1) are defined, respectively, as
Ak+1,k) & —[B(k+ 1k +1)x],  F(k+1k+1) 2 —[(k + 1]k + 1)x] (58)

where P(k+1]k+1) £ @(k+1k+1)-To(k+1lk+1), and D*(k|k) is the a posteriori, orthogonalized
estimate of the attitude matrix at time ti, to be discussed in the next section.

Finally, since the a posteriori attitude matrix, D(k + 1}k + 1), is computed based on the a
posteriori estimate, é(k + 1|k + 1), this implies a full reset control of the parameter vector, i.e.,
6°(k +1) = 0k + 1) — 6(k + 1|k + 1), where 6°(k + 1) is the reset state vector at tx,;, and a
corresponding reset of the state estimate, 6(k + 1|k + 1) = 0, which is then used in the ensuing
time propagation step. Since the reset control is applied to both the state vector and its estimate,
no changes are necessary in the estimation error covariance matrix.

ATTITUDE MATRIX ORTHOGONALIZATION

To improve the algorithm’s accuracy and enhance its stability, an additional orthogonalization pro-
cedure is introduced into the estimator, following the measurement update stage. In this procedure,
the orthogonal matrix closest to the filtered attitude matrix is computed.

Given the filtered attitude matrix D(k + 1]k + 1), the matrix orthogonalization problem is to
find the matrix

D*(k+1k+1)  arg min, ”1‘)(1: Flk+1) - D“ , subjectto DTD=I  (59)

Being a special case of the orthogonal Procrustes problem, the matrix orthogonalization problem
can be easily solved using the singular value decomposition (SVD). In cases where the excessive
computational burden associated with the SVD might render its use prohibitive, e.g., in real-time

attitude determination and control, the following approximate orthogonalization method, based on
the iterative method introduced in Ref. 10, can be utilized:

D*(k+1lk+1) = N(k + 1)D(k + 1]k + 1) (60)
where
N(k+1)2 gf— %D(k+1[k+1)BT(k+l|k+1) (61)

Remark 1. Using an approach similar to that used in Ref. 11, it can be shown that, to first-order
accuracy, the orthogonalization procedure does not affect the statistical properties of the estimator
and, therefore, does not necessitate any adjustments in the algorithm.

PREDICTION

In the prediction step at ¢y, the reset a posteriori estimate at time tx, £°(k|k) (computed with the
reset IRP estimate) and its corresponding error covariance matrix, P(k|k), are propagated to time

tk+1.
Using Eq. (19), we have

2(k + 1]k) = ®(T)z°(k]k) (62)
Using this result with Eq. (19) yields the covariance propagation equation
P(k + 1|k) = ®(T) P(k|k)®" (T) + I(T)Q;(k)TT(T) (63)

320 .



To propagate the attitude matrix to tx4; we use the most recent IRP, attitude-rate and angular
acceleration estimates, and the orthogonalized DCM estimate corresponding to t, in Eq. (13). This

yields
D(k+1Jk) = {I + A(k+1,k) + %/V(k +1,k) + éﬂ(k +1,k)
+ %T[ﬁ(k + 1LE)D(k + 1k) - $(k + 1k)A(k + 1, k)] }D'(klk) (64)

where the a priori estimates of A(k + 1,k) and ¥(k + 1) are defined, respectively, as

Ak +1,k) 2 — [0k + 1k)x],  F(k+1]k) & ~[(k + 1]k)x] (65)

NUMERICAL STUDY

Example |
In this example, three non-orthogonal baselines were used: b; = [1.0, 1.0, 0.0]T, by = [0.0, 1.0, O.O]T
b3 = [0.0, 0.0, 1.0]T. Two fixed sightlines were observed at all times, s; = %[1.0, 1.0, 1.O]T and

Sp = 71-2-[0.0, 1.0, l.O]T. The non-normalized GPS signal noise standard deviation was 5.0 mm.
When vector measurements were used, the noise equivalent angle of the inertially-referenced obser-
vations was set to 5.0 arc-s, while the body-referenced vector measurements were simulated to be
acquired by a low accuracy attitude sensor with a noise equivalent angle of 0.1 deg. These mea-
surements corresponded to a randomly selected vector, which was kept constant throughout the
run.

The angular rates of the satellite satisfied w;(t) = A; sin(";.—’:t + ¢;), where A; = 0.02,0.05,0.03
deg/s, ¢; = w/4,7/2,37/4 rad, and T; = 85,45,65 s for i = 1,2, 3, respectively. The initial angular
rate estimates were all set to zero. The true initial attitude corresponded to Euler angles of 30 deg,
20 deg and 10 deg in roll, pitch and yaw, respectively, while the filter’s initial state corresponded to
Euler angles of 25 deg, 15 deg and 5 deg, respectively. The filter was run at a rate of 20 Hz, and
the measurement processing rate was 10 Hz. The Singer angular acceleration model was used with
parameters set to T = 10 s, wpr = 1074 rad/s?, ppr = po = .001 for all three axes.

In Fig. 2, the true and estimated yaw angle time histories, and their corresponding estimation
errors, are shown for a typical run, with and without vector measurement aiding. (The estimated yaw
angle was computed using the estimated attitude matrix, assuming a 3-2-1 Euler angle sequence).
Using only GPS measurements, the average yaw estimation error was 7.15x10~3 deg, with a standard
deviation of 0.095 deg. When vector measurements were used in combination with the GPS signals,
the average estimation error was 9.87 x 10~* deg, and the estimation error standard deviation
reduced to 0.022 deg. In Fig. 3, the third component of the angular velocity vector, its estimates
and corresponding estimation errors are shown for the same run. Using GPS only measurements,
the steady state estimation error standard deviation was 0.015 deg/s. When vector measurements
were used in combination with the GPS signals, the estimation error standard deviation reduced to
0.0065 deg/s (the average rate estimation errors were on the order of 104 deg/s in both cases).

?

Example I|

In this example, the same parameters were used as in Example I, except for the following. The
three baselines used were now by = [0.1, 1.0, 0.1)7, & = [0.0, 1.0, 0.0]7, &5 = [0.0, 0.0, 1.0] 7. As
can be observed, the first two baselines are almost colinear. The angular rates of the satellite were

w = [0,236, O]T deg/hr. The Singer angular acceleration model parameters were set to 7 = 10 s,
Wy = 1075 rad/s?, par = po = .001 for all three axes. As in the first example, vector measurements,
when available, corresponded to a randomly selected, constant vector.
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Figure 2. Yaw Angle Estimation: (a) and (b) GPS Only Measurements, (c) and (d)
With Vector Measurement Aiding.

In Fig. 4, the true yaw angle time history is shown, along with the estimation error time histories
corresponding to the cases where only GPS measurements were used and where vector observations
were used along with the GPS measurements. (The estimated yaw angle was computed using the
estimated attitude matrix, assuming a 3-2-1 Euler angle sequence). As can be observed from Fig. 4,
the effect of aiding the GPS measurements with vector observations is very substantial in this ill-
conditioned case. Using only GPS measurements, the average yaw angle steady-state estimation
error in this run was 7.72 x 1073 deg, with an estimation error standard deviation of 0.087 deg.
When the GPS measurements were aided by vector measurements, the average Euler angle steady-
state estimation error reduced to 4.6 x 10~3 deg, with an estimation error standard deviation of
0.022 deg. In Fig. 5, the estimation error of the third rate component is shown, with and without
vector observation aiding. Using GPS only measurements, the steady-state rate estimation error
standard deviation was 9.34 x 10~4 deg/s. When vector measurements were used in combination with
the GPS signals, the standard deviation reduced to 3.51 x 10~4 deg/s (the average rate estimation
error was on the order of 10~° deg/s in both cases).
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Figure 3. w3 Estimation: (a) and (b) GPS Only Measurements, (c) and (d) With Vector
Measurement Aiding.

CONCLUSIONS

A nonlinear sequential estimator has been presented, that uses differential GPS carrier phase mea-
surements to estimate both the attitude matrix and the angular velocity of a spacecraft. The
algorithm is based on the IRP third-order minimal parametrization of the attitude matrix, which
is at the heart of its computational efficiency. Avoiding the use of the typically uncertain (and
frequently unknown) spacecraft dynamic model, the filter uses a polynomial state space model, in
which the spacecraft angular acceleration is modeled as an exponentially autocorrelated stochastic
process. When vector observations are available (e.g., from low accuracy Sun sensors or magnetome-
ters), the estimator’s structure can be easily modified to exploit this additional information and,
thereby, significantly enhance the algorithm'’s robustness and accuracy. Numerical examples have
been presented, that demonstrate the performance of the proposed algorithm and the advantages of
aiding the GPS carrier phase signals with vector observations, even when the vector measurements

are of relatively low accuracy.
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